Lectures 22 & 23: DETERMINATION OF EXCHANGE RATES

• Building blocs
 - Interest rate parity
 - Money demand equation
 - Goods markets

• Flexible-price version: monetarist/Lucas model
 - derivation
 - hyperinflation & other applications

• Sticky-price version: Dornbusch overshooting model

• Forecasting
Motivations of the monetary approach

Because S is the price of foreign money (in terms of domestic), it is determined by the supply & demand for money (foreign vs. domestic).

Key assumption: Expected returns are equalized internationally.

- Perfect capital mobility \Rightarrow speculators are able to adjust their portfolios quickly to reflect their desires;
- + There is no exchange risk premium.

\Rightarrow UIP holds: $i - i^* = \Delta s^e$.

Key results:

- S is highly variable, like other asset prices.
- Expectations are central.
Building blocks

Interest rate parity
+ Money demand equation
 + Flexible goods prices => PPP
 => monetarist or Lucas models.
 or
 + Slow goods adjustment => sticky prices
 => Dornbusch overshooting model.
INTEREST RATE PARITY CONDITIONS

Covered interest parity across countries
holds to the extent capital controls & other barriers are low.

Uncovered interest parity
holds if risk is unimportant, which is hard to tell in practice.

Real interest parity
may hold in the long run but not in the short run.

\[i - i^*_{\text{offshore}} = fd \]
\[i - i^* = \Delta s^e \]
\[i - \pi^e = i^* - \pi^{*e}. \]
MONETARIST/LUCAS MODEL

PPP: \(S = P/P^* \)

+ Money market equilibrium
\[
\frac{M}{P} = \frac{L(i, Y)^{1/}}{} \implies P = \frac{M}{L(i, Y)} \quad \frac{P^* = \frac{M^*}{L^*}}{}
\]

Experiment 1a:
\[
\text{\(M \uparrow \)} \implies S \uparrow \text{ in proportion}
\]

1b:
\[
\text{\(M^* \uparrow \)} \implies S \downarrow \text{ in proportion}
\]

Why? Increase in supply of foreign money reduces its price.

1/ The Lucas version derives \(L \) from optimizing behavior, rather than just assuming it.
\[S = \frac{M/L(\cdot)}{M^* / L^* (\cdot)} \]

Experiment 2a:
\[\gamma \uparrow \Rightarrow L \uparrow \Rightarrow S \downarrow . \]

2b:
\[\gamma^* \uparrow \Rightarrow L^* \uparrow \Rightarrow S \uparrow . \]

Why? Increase in demand for foreign money raises its price.

Experiment 3:
\[\pi^e \uparrow \Rightarrow i \uparrow \Rightarrow L \downarrow \Rightarrow S \uparrow \]

Why?

\(i-i^* \) reflects expectation of future depreciation \(\Delta s^e \) (\(\leq \) UIP), due (in this model) to expected inflation \(\pi^e \).

So investors seek to protect themselves: shift out of domestic money.
Illustrations of the importance of expectations (Δs^e):

• **Effect of “News”:** In theory, S jumps when, and only when, there is new information, e.g., re: growth or monetary fundamentals.

• **Hyperinflation:**
 Expectation of rapid money growth and loss in the value of currency
 $\Rightarrow L \downarrow \Rightarrow S \uparrow$, even ahead of the actual money growth.

• **Speculative bubbles:**
 Occasionally a shift in expectations, even if not based in fundamentals, can cause a self-justifying movement in L and S.

• **Target zone:** If the band is credible, speculation can stabilize S, pushing it away from the edges even ahead of intervention.

• **Random walk:** Information about the future already incorporated in today’s price (but does not imply zero forecastability of RW).
Effect of News: In 2002, when Lula pulled ahead of the incumbent party in the polls, fearful investors sold Brazilian reals.
The world’s most recent hyperinflation: Zimbabwe, 2007-08

Inflation peaked at 2,600% per month.
The central bank monetized government debt.

The driving force? Increase in the money supply:
The exchange rate S increased along with the price level P.

Both P & S rose far more than the money supply. Why?

When the ongoing inflation rate is high, the demand for money is low in response. For M/P to fall, P must go up more than M.
Limitations of the monetarist/Lucas model of exchange rate determination

No allowance for SR variation in:

the real exchange rate \(Q \)

the real interest rate \(r \).

One approach: International versions of **Real Business Cycle** models assume all observed variation in \(Q \) is due to variation in LR equilibrium \(\bar{Q} \) (and \(r \) is due to \(\bar{r} \)), in turn due to shifts in tastes, productivity.

But we want to be able to talk about transitory deviations of \(Q \) from \(\bar{Q} \) (and \(r \) from \(\bar{r} \)), arising for monetary reasons.

=> **Dornbusch overshooting** model.
Recap: TWO KINDS OF MONETARY MODELS

(1) Goods prices perfectly flexible
 => Monetarist/ Lucas model

(2) Goods prices sticky
 => Dornbusch overshooting model
Sticky goods prices => autoregressive pattern in real exchange rate
(though you need 200 years of data to see it)

Estimated adjustment ≈ 25% or 30% per year.
DORNBUSCH
OVERSHOOTING MODEL
DORNBUSCH OVERSHEADING MODEL

PPP holds only in the Long Run, for \bar{S}.
In the SR, S can be pulled away from \bar{S}.

Consider an increase in real interest rate $r \equiv i - \pi^e$
e.g., due to M contraction, as in UK 1980, US 1982, Japan 1990, or Brazil 2011.

\Rightarrow Domestic assets more attractive

\Rightarrow Appreciation: $S \downarrow$
until currency “overvalued” relative to \bar{S};
\Rightarrow investors expect future depreciation.

When Δs^e is large enough to offset $i - i^*$, that is the overshooting equilibrium.
Then, **dynamic path:**

high r and high currency \Rightarrow low demand for goods (as in Mundell-Fleming model)

\Rightarrow deflation, or low inflation

\Rightarrow gradually rising M/P

\Rightarrow gradually falling i & r

\Rightarrow gradually depreciating currency.

In LR, neutrality:

P and S have changed in same proportion as M

$\Rightarrow M/P$, S/P, r and Y back to LR equilibria.
The experiment in the original Dornbusch article: a permanent monetary *expansion*.

\Rightarrow fall in real interest rate, $r \equiv i - \Delta p^e$

\Rightarrow domestic assets less attractive \Rightarrow depreciation: $S \uparrow$, until currency “undervalued” relative to \bar{S}.

\Rightarrow investors expect future appreciation.

• When $-\Delta s^e$ offsets $i-i^*$, that is the *overshooting equilibrium*.

• Then, **dynamic path**: low r and low currency

 • \Rightarrow high demand for goods \Rightarrow high inflation

 • \Rightarrow gradually falling M/P \Rightarrow gradually rising i & r

 • \Rightarrow gradually appreciating currency.

• Until back to LR equilibrium.
The Dornbusch model ties it all together:

- In the short run, it is the same as the Mundell-Fleming model,
 - except that Δs^e is what allows interest rates to differ,
 - rather than barriers to the flow of capital.

- In the long run, it is the same as the monetarist/Lucas model

- The path from the short run to the long run
 is driven by the speed of adjustment of goods prices,
 - which also drives the path from flat to steep AS curves.
 - Estimated adjustment from the PPP tests $\approx 25\%$ or 30% per year.
SUMMARY OF FACTORS DETERMINING THE EXCHANGE RATE

(1) LR monetary equilibrium:
\[
\bar{S} = \left(\frac{P}{P^*}\right) \bar{Q} = \frac{M / M^*}{L(,)/L^*(,)} \bar{Q}
\]

(2) Dornbusch overshooting:
SR monetary fundamentals pull S away from \(\bar{S}\),
(in proportion to the real interest differential).

(3) LR real exchange rate \(\bar{Q}\) can change,
e.g., Balassa-Samuelson effect or oil shock.

(4) Speculative bubbles.
TECHNIQUES FOR PREDICTING THE EXCHANGE RATE

Models based on fundamentals
- Monetary Models
 - Monetarist/Lucas model
 - Dornbusch overshooting model
- Other models based on economic fundamentals
 - Portfolio-balance model...

Models based on pure time series properties
- “Technical analysis” (used by many traders)
- ARIMA or other time series techniques (used by econometricians)

Other strategies
- Use the forward rate; or interest differential;
- random walk (“the best guess as to future spot rate is today’s spot rate”)
Appendices

• Appendix 1: The Dornbusch overshooting graph

• Appendix 2: Example: The dollar

• Appendix 3: Is the forward rate an optimal predictor?
In the instantaneous overshooting equilibrium (at C), S rises more-than-proportionately to M to equalize expected returns.

Excess Demand (at C) causes P to rise over time until reaching LR equilibrium (at B).

\(M \uparrow \Rightarrow i \downarrow \Rightarrow S \uparrow \) while P is tied down.
Appendix 2:
The example of the $
(trade-weighted, 1974-2006)

• Compute real interest rate in US & abroad (Fig. a)

• Differential was
 – negative in 1979,
 – rose sharply through 1984, and
 – then came back down toward zero.

• Real value of the dollar followed suit (Fig. b)
 – But many fluctuations cannot be explained, even year-long
 • Strongest deviation: 1984-85 $ appreciation, & 2001-02.
 • Speculative bubble?
US real interest rate < 0 in late 70s (due to high inflation\(^e\)).

Real $ rose with monetary fundamentals. & then beyond, in 1984-85. & again 2001-02 (esp. vs. €).

Real interest differential peaked in 1984.

¥ in 1995 may have been another bubble.
Appendix 3: The forward rate F_t as a predictor of S_{t+1}

- We know that F_t is a terrible predictor of S_{t+1}
 - just like any other predictor.
 - I.e., the prediction errors $S_{t+1} - F_t$, positive & negative, are large.
 - Reason: new information (news) comes out between t and $t+1$.

- The question is whether the predictor is unbiased,
 - i.e., are the errors mean-zero & uncorrelated with information known at t?
 - If so, then it incorporates all available information.

- But we will see that the answer is “no:”
 - F_t is a biased predictor.
IS THE FORWARD RATE AN UNBIASED FORECASTER FOR THE FUTURE SPOT RATE?

Regression equation: \[\Delta s_{t+1} = \alpha + \beta (f_{d_t}) + \varepsilon_{t+1} \]

Unbiasedness hypothesis: \(\beta = 1 \)

Random walk hypothesis: \(\beta = 0 \)

Usual finding: \(\beta << 1 \). (Sometimes \(\approx 0 \), or even <0.)

\(\Rightarrow \) \(f_d \) is biased

Possible interpretations of finding:

1) Expectations are biased (investors do not determine \(\Delta s^e \) optimally), or else

2) there is an exchange risk premium (\(f_d - \Delta s^e \neq 0 \))