ALLOCATING COSTS COMMENSURATE WITH TRANSMISSION BENEFITS

William W. Hogan

Mossavar-Rahmani Center for Business and Government
John F. Kennedy School of Government
Harvard University
Cambridge, Massachusetts 02138

Northeast Energy and Commerce Association (NECA)
Boston, MA

October 13, 2011
Transmission expansion interacts with electricity market design. For example, policies for smart grids emphasize better deployment of information and incentives. A major challenge is to improve the information and rationalize the incentives deployed. According to the White House plan:

“A smarter, modernized, and expanded grid will be pivotal to the United States’ world leadership in a clean energy future. This policy framework focuses on the deployment of information and communications technologies in the electricity sector. As they are developed and deployed, these smart grid technologies and applications will bring new capabilities to utilities and their customers. In tandem with the development and deployment of high-capacity transmission lines, which is a topic beyond the scope of this report, smart grid technologies will play an important role in supporting the increased use of clean energy.

…

This framework is premised on four pillars:

1. Enabling cost-effective smart grid investments
2. Unlocking the potential for innovation in the electric sector
3. Empowering consumers and enabling them to make informed decisions, and
4. Securing the grid.”

At least three of the four pillars imply a need for better cost allocation, pricing structures and market signals.

A transmission infrastructure mandatory cost allocation framework requires a hybrid system that is regional in scope and compatible with the larger market design. FERC Order 1000 proposed principles that are compatible with a larger hybrid system. The broader framework would include:

- **Cost Benefit Framework**
 - Gold Standard: Net Benefits > Total Cost
 - Cost Sharing: Commensurable with Benefits
 - Compatible with Larger Market Design

- **Ex ante Estimation and Allocation**

- **Net Benefits = Change in Expected Social Welfare**
 - Counterfactual without contracts
 - Uncertainty and Expected Present Value

- **Approximations of Benefits**
 - Reliability
 - Economic
 - Public Policy

- **Benefit estimates commensurable across categories for projects**
 - Transmission lines affect all categories of benefits.
 - Costs cannot be separated into distinct buckets.

ELECTRICITY MARKET

Transmission Expansion

Efficient transmission infrastructure investment interacts with the costs and benefits of types and locations of renewable energy investment.

RGOS Zone Scenario Generation and Transmission Cost Comparison

3 Midwest ISO. Regional Generation Outlet Study, November 19, 2010, p. 3.
A simple model illustrates a basic framework for defining and classifying the impacts of transmission expansion.
Large scale transmission investments can change export and import volumes and have a material effect on expected market prices.
ELECTRICITY MARKET

Transmission Benefit Calculations

Different conditions can arise in parsing the distribution of benefits and the comparison with the total cost of the transmission expansion.

Expansion Total Cost (TC) and Benefits

- Gold Standard: \(F+G+H > TC \)
- Business Stealing: \(B+F+G+D+H > TC; F + G + H \)
- Core Coalition Case: \(B+F+G+D+H > F+G+H; TC \)
- Strict Merchant Case: \(G > TC \)
ELECTRICITY MARKET

Transmission Benefit Calculations

Existing transmission infrastructure benefits include conflicting definitions that are inconsistent with basic market principles and will create cost allocation problems.

Transmission Benefits

“Load Cost Savings where load cost represents the annual load payments, measured by projections in hourly load weighted LMP: Load cost savings and Adjusted Production Cost savings are essentially two alternative benefit measures to address a single type of economic value and are not additive measures. Load cost savings were not used to calculate the total value of the RGOS plans in MTEP10. … Value of transmission plan (per future) = Sum of values of financially quantifiable measures = Adjusted Production Cost savings + Capacity loss savings + Carbon emission reductions.” (MISO, “2010 Transmission Expansion Plan,” Nov. 30, 2010, p. 153-154.)
ELECTRICITY MARKET Beneficiary Pays Cost Allocation

“The cost of transmission facilities must be allocated to those within the transmission planning region that benefit from those facilities in a manner that is at least roughly commensurate with estimated benefits. … Those that receive no benefit from transmission facilities, either at present or in a likely future scenario, must not be involuntarily allocated any of the costs of those facilities.” (FERC Order 1000, ¶ 622, 637) Cost benefit analysis of transmission expansion inherently provides information about the distribution of benefits for use in cost allocation.⁴

Expansion Total Cost (TC) Allocation

P
Gold Standard
F+G+H>TC

Business Stealing
B+F+G+D+H>TC> F + G + H
Do not expand

A

B

C

D

E

Transmission Capacity

Q

Strict Merchant Case
Transmission Rights=100%

Efficiency Constraints
Import Region < F
Export region < H
Trans. Rights < G

Core Coalition Case
B+F+G+D+H>F+G+H>TC
Import Region % = F/(F+G+H)
Export Region % =H/(F+G+H)
Transmission Rights % =G/(F+G+H)

ELECTRICITY MARKET

Transmission Expansion Benefits

Efficient transmission infrastructure investment includes estimated reliability benefits.

- Reliability modeling in a cost benefit framework.
 - Reliability constraint and cost minimization.
 - Change in value of expected curtailments at VOLL.
 - PJM CETO/CETL method approximates expected curtailments.

- For example, this is not the same as the PJM DFAX cost allocation
 “Calculate the Distribution Factor (DFAX), where DFAX represents a measure of the effect of each zone’s load on the transmission constraint that requires the mitigating upgrade, as determined by power flow analysis. The source used for the DFAX calculation is the aggregate of all generation external to the study area and the sink is the peak zonal load for each Transmission Owner within the study area. Multiply each DFAX by each zonal load to determine the zone’s MW impact on the facility that requires upgrading.” (PJM Manual 14B, p. 34)
Efficient transmission infrastructure investment includes benefits of meeting public policy objectives or constraints.

- **Environmental Constraints.** With caps or prices on emissions, environmental costs would be internalized with the cost of generation expansion and dispatch. Public policy objectives become part of standard economic cost benefit analysis.

- **Renewable Portfolio Standards.** The Midwest “RGOS Zone Scenario Generation and Transmission Cost Comparison” provides an example of including public policy constraints. States established the anticipated targets, including local generation requirements. The scenarios considered different mixes of generation and transmission investment subject to the constraint of meeting the RPS mandates.

- **Transmission Benefit Calculation.** The benefit of transmission expansion does not include the benefit of the RPS mandate. Evaluating the benefits of public policy is different and more difficult than evaluating the benefits of transmission expansion in meeting public policy objectives.
Efficient transmission infrastructure investment inherently requires forecasts of conditions for long-lived infrastructure. This presents challenges for cost benefit analysis and cost allocation.

- **Defining the Horizon of Analysis.** This is a standard problem in planning, but will be more important to the extent it affects cost allocation.

- **Representing Uncertainty.** Scenarios and sensitivity analysis will be more important. And benefits need to be aggregated as expected benefits, probability weighted across anticipated outcomes. This is not new, but cost allocation will make this both more contentious and more necessary.

- **Choosing the Counterfactual.** This seems straightforward in a static one-shot framework. It becomes more difficult in the dynamic setting that includes future transmission investments.

- **Harmonizing Investment Decisions.** The regional planning function for transmission is not the same thing as integrated regional planning of old. Even if the plan mandates certain transmission investments, the complementary decisions on generation and load will be decentralized.

- **Eliciting Support of Beneficiaries.** “The proposed cost allocation mechanism is based on a ‘beneficiaries pay’ approach, consistent with the Commission’s longstanding cost causation principles. … Beneficiaries will be those entities that economically benefit from the project, and the cost allocation among them will be based upon their relative economic benefit. … The proposed cost allocation mechanism will apply only if a super-majority of a project's beneficiaries agree that an economic project should proceed. The super-majority required to proceed equals 80 percent of the weighted vote of the beneficiaries associated with the project that are present at the time of the vote.”

- **Other?**