Electricity Market Developments in the Nord Pool Area

Mette Bjørndal
NHH Norwegian School of Economics

Harvard Electricity Policy Group Meeting
Santa Monica, CA
March 8, 2012
Norwegian and Nordic electricity market

• One of the first deregulated electricity markets in the world
 – Nordic countries (excl. Iceland): 400 TWh / population 25 mill.
• Energy is traded in the Nordic market
 – Power Exchange: Nord Pool Spot
 – Financial Market: NASDAQ OMX Commodities (from 2010)
• Vertical separation of transmission/distribution and generation
 – By separation of accounts (except for Statkraft / Statnett)
• Competitive supply and demand for power
 – Choose energy supplier
 – No price caps
 – Not even for households
• Transmission and distribution are regulated
Norwegian and Nordic electricity market

Long term contracts: Reduced volume and duration after deregulation

- Contracts offered
 - Fixed price
 - Variable price
 - Spot price

Generation

Nord Pool Spot

- System price (unconstrained)
- Area prices
- 70 – 80 % of Nordic power

Retailers

Energy intensive industry

Consumption

Transmission

TSO (Statnett)
Investments by licenses

≤ 132 kV (>70 companies)
Investments by licenses

≤ 22 kV (>130 companies)
Area concession – rights and obligations

Regional transmission

Third party access to network
Implemented by point tariffs

Distribution
Nord Pool Spot

- Covers
 - Norway, Sweden, Finland, Denmark, KONTEK/Germany, Estonia
- Day-ahead
 - Supplemented by balancing / regulation markets
- Voluntary pool
 - Trades between Elspot areas are mandatory
 - Agents use Nord Pool Spot to determine prices and as a counterpart
- Three kinds of bids
 - Hourly bids – bids for individual hours
 - Block bids – create dependency between hours
 - Non-convexities
 - Flexible hourly bids – sell during hours with highest prices
Regulation of electricity networks - Norway

• Network companies (excl. Statnett)
 − Regional transmission (≤ 132 kV)
 • 75 companies, annual cost 2006 ≈ 3.2 billion NOK
 − Distribution networks
 • 136 companies, annual cost 2006 ≈ 10.5 billion NOK
 • 57 companies with both RS- and D-networks

• Regulation is based on total cost
 − Rate of return regulation from 1993
 − Incentive regulation from 1997 (with minimum returns)

• Annual cost includes value of lost load (VOLL) and cost of capital
 − VOLL = unit prices * lost load (MWh)
 − Linear depreciation (according to accounts)
 − Return on capital = Book values * NVE rate of return
Cost groups – distribution companies

2006 dataset
Incentive regulation

• Incentives for efficient operation, organization, investments
 – Revenue should be independent of the regulated company’s own costs
 • Revenue = cost of the “marginal” company, given the company’s “output” (volume and quality)
 • Profit also depends on the company’s costs

• Sufficient revenue level to attract both financial and human capital
 – Competitive rate of return on invested capital
 – Accept continual “super-profits”

• Time profile of revenues can be an issue
 – Productivity independent of age
 • Real annuity based on new replacement values / catalogue values
 • Ref. annuity versus fixed part payment
Regulation model from 2007

• Revenue cap regulation continued
 – A company’s own cost should not determine its cost norm
 • “Super-efficiency”
 – To allow super-profits for the most efficient companies
 • “Calibration of average efficiency”

• Yardstick-competition
 – Revenue cap based on actual costs and cost norms
 \[\text{RCap} = C + \rho (C^* - C) = \rho C^* + (1 - \rho) C \]

• How to determine C?
 – Accounts and calculated costs
 – Reference and regulation period

• How to determine C*?
 – Benchmarking models and interpretation of results
DEA benchmarking method

• In DEA different assumptions can be made about
 – Inputs / outputs
 – Economies of scale
 – Super efficiency

• To implement DEA efficiency analyses requires knowledge about the underlying cost structure!
 – Cost groups and cost assessment, especially for calculated cost
 – Cost drivers

• Successful implementation requires reliable data
 – Frontier model

• Need to consider how the DEA results are to be used in the regulation mechanism
 – Calibration of returns
 – Time lags
Sum industry revenue cap (excl. Statnett)

Yardstick revenue cap formula for each company

\[
RCap = \rho \cdot C^{**} + (1 - \rho) \cdot C + CP
\]

\[
CP = 1.6 \cdot r_{NVE} \cdot \text{Investments}_{t-2}
\]

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>"Profitability"</th>
<th>2008</th>
<th>"Profitability"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue cap based on DEA eff. scores</td>
<td>12 986</td>
<td>6.54 %</td>
<td>13 848</td>
<td>6.37 %</td>
</tr>
<tr>
<td>Effect of adjusting eff. scores (step 2)</td>
<td>599</td>
<td>1.55 %</td>
<td>786</td>
<td>2.01 %</td>
</tr>
<tr>
<td>Revenue cap after step 2 adjustments</td>
<td>13 585</td>
<td>8.09 %</td>
<td>14 635</td>
<td>8.38 %</td>
</tr>
<tr>
<td>Compensation parameter (step 3)</td>
<td>328</td>
<td>0.85 %</td>
<td>371</td>
<td>0.95 %</td>
</tr>
<tr>
<td>Rev. cap before calibration (RCap1)</td>
<td>13 913</td>
<td>8.94 %</td>
<td>15 006</td>
<td>9.33 %</td>
</tr>
<tr>
<td>Calibration effect (step 3)</td>
<td>-328</td>
<td>-0.85 %</td>
<td>-372</td>
<td>-0.95 %</td>
</tr>
<tr>
<td>Final revenue cap (RCap2)</td>
<td>13 585</td>
<td>8.09 %</td>
<td>14 634</td>
<td>8.38 %</td>
</tr>
</tbody>
</table>
Elspot prices at Nord Pool Spot (EUR/MWh)

<table>
<thead>
<tr>
<th>Year</th>
<th>SYS</th>
<th>NO1</th>
<th>NO2</th>
<th>NO3</th>
<th>NO4</th>
<th>NO5</th>
<th>DK1</th>
<th>DK2</th>
<th>FI</th>
<th>SE</th>
<th>EE</th>
<th>KT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>12.75</td>
<td>12.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16.41</td>
<td>-</td>
<td>14.88</td>
<td>14.24</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>23.15</td>
<td>23.08</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23.74</td>
<td>23.54</td>
<td>22.83</td>
<td>22.86</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>26.91</td>
<td>26.57</td>
<td>26.80</td>
<td>26.80</td>
<td>-</td>
<td>-</td>
<td>25.47</td>
<td>28.59</td>
<td>27.28</td>
<td>27.62</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>36.69</td>
<td>37.11</td>
<td>36.66</td>
<td>36.66</td>
<td>-</td>
<td>-</td>
<td>33.68</td>
<td>36.80</td>
<td>35.30</td>
<td>36.49</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>28.92</td>
<td>29.40</td>
<td>29.12</td>
<td>29.12</td>
<td>-</td>
<td>-</td>
<td>28.80</td>
<td>28.35</td>
<td>27.68</td>
<td>28.08</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>29.33</td>
<td>29.13</td>
<td>29.39</td>
<td>29.39</td>
<td>-</td>
<td>-</td>
<td>37.37</td>
<td>33.80</td>
<td>30.53</td>
<td>29.76</td>
<td>59.32</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>48.59</td>
<td>49.23</td>
<td>48.97</td>
<td>48.98</td>
<td>-</td>
<td>-</td>
<td>44.18</td>
<td>48.53</td>
<td>48.57</td>
<td>48.12</td>
<td>49.70</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>27.93</td>
<td>25.74</td>
<td>29.59</td>
<td>29.43</td>
<td>-</td>
<td>-</td>
<td>32.40</td>
<td>33.01</td>
<td>30.01</td>
<td>30.25</td>
<td>36.62</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>44.73</td>
<td>39.15</td>
<td>51.17</td>
<td>49.81</td>
<td>-</td>
<td>-</td>
<td>56.43</td>
<td>56.64</td>
<td>51.02</td>
<td>51.12</td>
<td>63.89</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>35.02</td>
<td>33.74</td>
<td>35.53</td>
<td>35.53</td>
<td>-</td>
<td>-</td>
<td>36.05</td>
<td>39.88</td>
<td>36.98</td>
<td>37.01</td>
<td>33.94</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>53.06</td>
<td>54.25</td>
<td>50.82</td>
<td>50.04</td>
<td>51.79</td>
<td>51.79</td>
<td>46.49</td>
<td>56.94</td>
<td>56.64</td>
<td>56.82</td>
<td>34.92</td>
<td></td>
</tr>
</tbody>
</table>

The market works well?

Energy not supplied (ENS) in per thousand of the energy supplied (ES) to end users in Norway since 1996
Major developments and challenges

• European integration
 – Tight volume coupling
 – Convergence of algorithms

• Congestion management
 – Zonal pricing and transfer capacities

• Demand response
 – Industry
 – Households
 – Advanced metering and control systems from 2017

• Investments
 – Generation
 – Transmission
European integration

Figure 4.1 – Day-ahead transmission capacity allocations across Europe (updated June 2007)
Congestion Management in the Nordic Power Market

• Inter zonal congestion – Zonal pricing / Market splitting
 – Day-ahead market
 – For the largest and long-lasting congestions in Norway and Sweden and for congestions on the borders of the control areas, including two Danish areas

• Intra zonal congestion – Counter trading / Redispatching
 – The regulation market

• TSOs are regulated
 – Net effect of ZP and CT is passed on to domestic customers

• What is zonal pricing?
 – A “simplification” of nodal prices
 • Fewer prices, good for liquidity and competition in the spot market?
 – Implies some sort of aggregation
 • What is to be aggregated? Prices? The physical network model?
Aggregation models

True network
- "All" nodes included
- "All" lines represented

Price aggregation
- "All" nodes included
- "All" lines represented
- Zones with uniform prices

Physical aggregation
- Aggregate nodes
- Aggregate lines
- Prices for "nodes"
Transfer capacities

• Capacity limits are determined by TSOs and communicated to Nord Pool before market clearing
• Limits are based on
 – Forecasts of supply and demand
 – Imports/exports from the Nord Pool area
 – Security constraints
• Sweden cut 2 / Denmark DK1 cut B
 – Proportional allocation to each connection or group of connections
 – Optimization routine to determine capacity utilization for groups of connections
• Norway west-east connections
 – Hasle corridor heuristic
Figur 3: Diverse fysiske forhold og spotpris i Østdanmark d. 28. og 29. november.

Note: forskellen i Elspot flow og Actual flow i venstre figur på Kontek-forbindelsen, skyldes Energi E2s gamle aftale om at sende 350 MWh i sydgående retning.
<table>
<thead>
<tr>
<th>Date</th>
<th>SE>FI</th>
<th>SE>DK1</th>
<th>SE>DK2</th>
<th>SE>NO1</th>
<th>NO1>SE</th>
<th>NO1>NO3</th>
<th>NO3>NO1</th>
<th>NO2>NO5</th>
<th>NO3>NO4</th>
<th>Cut 2 SE*</th>
<th>Cut B DK1(in)*</th>
<th>Cut B DK1(out)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-01</td>
<td>1610</td>
<td>150</td>
<td>1300</td>
<td>1745</td>
<td>1200</td>
<td>150</td>
<td>-150</td>
<td>700</td>
<td>0</td>
<td>1928</td>
<td>1340</td>
<td>1320</td>
</tr>
<tr>
<td>01-02</td>
<td>1610</td>
<td>150</td>
<td>1300</td>
<td>1745</td>
<td>1200</td>
<td>150</td>
<td>-150</td>
<td>700</td>
<td>0</td>
<td>1601</td>
<td>1340</td>
<td>1320</td>
</tr>
<tr>
<td>02-03</td>
<td>1610</td>
<td>150</td>
<td>1300</td>
<td>1745</td>
<td>1300</td>
<td>150</td>
<td>-150</td>
<td>700</td>
<td>0</td>
<td>1601</td>
<td>1340</td>
<td>1320</td>
</tr>
<tr>
<td>03-04</td>
<td>1610</td>
<td>150</td>
<td>1300</td>
<td>1745</td>
<td>1300</td>
<td>150</td>
<td>-150</td>
<td>700</td>
<td>0</td>
<td>1801</td>
<td>1340</td>
<td>1320</td>
</tr>
<tr>
<td>04-05</td>
<td>1610</td>
<td>150</td>
<td>1300</td>
<td>1745</td>
<td>1300</td>
<td>150</td>
<td>-150</td>
<td>700</td>
<td>0</td>
<td>2144</td>
<td>1340</td>
<td>1320</td>
</tr>
<tr>
<td>05-06</td>
<td>1610</td>
<td>150</td>
<td>1200</td>
<td>1295</td>
<td>1000</td>
<td>100</td>
<td>-100</td>
<td>500</td>
<td>0</td>
<td>1112</td>
<td>1340</td>
<td>1320</td>
</tr>
<tr>
<td>06-07</td>
<td>1610</td>
<td>150</td>
<td>600</td>
<td>695</td>
<td>700</td>
<td>-100</td>
<td>100</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>07-08</td>
<td>1060</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>400</td>
<td>-200</td>
<td>200</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>08-09</td>
<td>1060</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>400</td>
<td>-150</td>
<td>150</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>09-10</td>
<td>1060</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>500</td>
<td>-150</td>
<td>150</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>10-11</td>
<td>1060</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>500</td>
<td>-150</td>
<td>150</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>11-12</td>
<td>1060</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>500</td>
<td>-150</td>
<td>150</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>12-13</td>
<td>1060</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>500</td>
<td>-150</td>
<td>150</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>13-14</td>
<td>1060</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>500</td>
<td>-100</td>
<td>100</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>14-15</td>
<td>1060</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>500</td>
<td>-100</td>
<td>100</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>15-16</td>
<td>1060</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>500</td>
<td>-100</td>
<td>100</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>16-17</td>
<td>1060</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>400</td>
<td>-100</td>
<td>100</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>17-18</td>
<td>1060</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>500</td>
<td>-100</td>
<td>100</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>18-19</td>
<td>1095</td>
<td>48</td>
<td>126</td>
<td>237</td>
<td>600</td>
<td>-100</td>
<td>100</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>19-20</td>
<td>1277</td>
<td>150</td>
<td>726</td>
<td>837</td>
<td>600</td>
<td>-100</td>
<td>100</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>20-21</td>
<td>1533</td>
<td>150</td>
<td>1300</td>
<td>1437</td>
<td>700</td>
<td>0</td>
<td>0</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>21-22</td>
<td>1610</td>
<td>150</td>
<td>1300</td>
<td>1745</td>
<td>700</td>
<td>50</td>
<td>-50</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>22-23</td>
<td>1610</td>
<td>150</td>
<td>1300</td>
<td>1745</td>
<td>800</td>
<td>50</td>
<td>-50</td>
<td>500</td>
<td>0</td>
<td>2346</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>23-24</td>
<td>1610</td>
<td>150</td>
<td>1300</td>
<td>1745</td>
<td>800</td>
<td>50</td>
<td>-50</td>
<td>700</td>
<td>0</td>
<td>3897</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>Low</td>
<td>1060</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>400</td>
<td>-200</td>
<td>-150</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>1300</td>
<td>1320</td>
</tr>
<tr>
<td>High</td>
<td>1610</td>
<td>150</td>
<td>1300</td>
<td>1745</td>
<td>1300</td>
<td>150</td>
<td>200</td>
<td>700</td>
<td>0</td>
<td>3897</td>
<td>1340</td>
<td>1320</td>
</tr>
<tr>
<td>Sum</td>
<td>31665</td>
<td>1848</td>
<td>14352</td>
<td>19506</td>
<td>17400</td>
<td>-750</td>
<td>750</td>
<td>9200</td>
<td>0</td>
<td>17913</td>
<td>31440</td>
<td>31680</td>
</tr>
</tbody>
</table>

Data updated: 02. Dec. 2010, 13:50 Time is CET (GMT +1)
Remedy – more price areas
Challenges winter 09/10

• Very cold
• Long lasting nuclear outages
• Three periods with “sky high” spot prices
 – In some cases followed by large downward regulation in balancing market
• New price areas introduced
• Security constraints violated

⇒ Expert group to consider power system operation
Price spikes winter 09/10

• Very cold, high and inelastic demand, reductions in production and transfer capacities
 – December 17: Low Swedish nuclear power production
 – January 8: Low nuclear power production and low transfer capacity
 • Prices documented to be very sensitive to transfer capacities (Gaia report 2010, NordREG)
 – February 22: Low nuclear power production, low reservoirs and inflow (reduced efficiency in the hydro power system)

• Large price differences, but also missing price signals
 – Large price areas and relaxed security constraints
 • Bergen, Stavanger, Oslo
Transfer capacities from Southern Norway to Sweden and price difference (NVE)
Regulation market:
Down regulation at very high prices (NVE)
Large down-regulation - low RPM prices

• Several explanations for the down-regulation
 – The demand side adapted consumption to high Elspot prices
 – Forecasts of demand were bad under extreme temperatures
 – Suppliers seemed to fear high prices for up-regulation and oversupplied in Elspot
 – Starting of reserves in Sweden – discrete amounts – larger than necessary (partly due to minimum requirements for starting)

• What explains the large price difference?
 – Low elasticities in supply and demand implies a big impact on the Elspot market prices when demand increase
 – The mirror in RPM: Small down-regulations in the RPM results in low prices

• In addition: Energy intensive industry only offered power to the pool after the first spikes
Demand flexibility

• Three important aspects
 – The fundamental possibility to reduce the use of electricity
 • Substitution and income / direct price effect (the budget effect)
 – Incentives to change behavior
 • Real time measuring (hourly) and accounting
 • High transaction costs in frequent adjustment of behavior
 – Automatic price induced power regulation
 – Awareness about the possibilities – information and market
 • Fixed prices do not induce incentives to adjust demand
 – The energy intensive industry did not expect price peaks

• Prices should reflect cost variations and be allowed to vary in time and space so that they trigger
 • Investments in technology to avoid high prices and benefit from low prices
 • Short term flexibility
Investments

- Generation
 - Finland
 - Nuclear power
 - Long term contracts with industry
 - Denmark
 - Wind power
 - Feed in tariffs
 - Sweden
 - Fuel-substitution (mostly biomass)
 - Green certificates
 - Ambition: 17 TWh in 2016

- Norway
 - Small scale hydro power
 - Evidence of "real option behavior"
 - Waiting for the green certificate markets
 - Joint with Sweden from Jan 2012
 - Ambition: 26.4 TWh in 2020

<table>
<thead>
<tr>
<th>Current and expected generation fuel mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
</tr>
<tr>
<td>Wind power</td>
</tr>
<tr>
<td>Hydro power</td>
</tr>
<tr>
<td>Thermal power</td>
</tr>
</tbody>
</table>

Actual investment commissioning during 2010 (* Does not include 300 MW capacity in gas-fired mobile reserve plants)
Investments

• Transmission and distribution
 – Massive investment needs
 • 100 bill. until 2020
 • Book value today $\approx 60-65$ bill.
 – Public acceptance