Diversity Challenges in Electricity Markets

Richard P O’Neill
Federal Energy Regulatory Commission

Harvard Electricity Policy Group
December 4, 2014
Views expressed are not necessarily those of the Commission
Give load a chance

- Current models assume value of 'lost load' at $3500/MWh or more
- Many would reduce consumption at less than $350/MWh
- Smart meters, smart appliances and 'low hanging fruit'
- Let demand speak for itself
- Price-responsive demand
 - is the most important missing element of market diversity and market efficiency
 - does not need to participate in the capacity market.
The Good Olde Days

HISTORICAL U.S. CONSTRUCTION COST EXPERIENCE

for nuclear plants under cost-of-service regulation

<table>
<thead>
<tr>
<th>Construction Started</th>
<th>Estimated Overnight Cost</th>
<th>Actual Overnight Cost</th>
<th>% OVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966-67</td>
<td>$560/kWe</td>
<td>$1,170/kWe</td>
<td>209%</td>
</tr>
<tr>
<td>1968-69</td>
<td>$679</td>
<td>$2,000</td>
<td>294%</td>
</tr>
<tr>
<td>1970-71</td>
<td>$760</td>
<td>$2,650</td>
<td>348%</td>
</tr>
<tr>
<td>1972-73</td>
<td>$1,117</td>
<td>$3,555</td>
<td>318%</td>
</tr>
<tr>
<td>1974-75</td>
<td>$1,156</td>
<td>$4,410</td>
<td>381%</td>
</tr>
<tr>
<td>1976-77</td>
<td>$1,493</td>
<td>$4,008</td>
<td>269%</td>
</tr>
</tbody>
</table>

Source: U.S. EIA

too cheap to too expensive
Financial Portfolio Selection

1952 Markowitz diversifies a portfolio to maximize expected returns for an investor’s risk tolerance.

1960s Capital Asset Pricing Model provides framework for risk/return tradeoffs.

1973 Black Scholes Model used to price of a call option.

1992 French and Fama find the CAPM measure of systematic risk was unreliable.
Financial Portfolio theory is hard but we are whistling past the graveyard

- Mathematical and statistical finance assumes we know future probability distributions
 - copulas used for stress-tests
 - the martingale (doubling down) game
 - CAPM is widely taught because of the insights???
- Easy entry and exit

- S&P 500 is the gold standard
- Transactions costs: many snake oil salesman
- Should or could we do this for social security?
Energy Portfolio Design (Diversity) in 1978

- Oil running out
 - Subsidized imports!!!!!! and Strategic Petroleum Reserve
- Public Utility Regulatory Policies Act (PURPA)
 - Must buy wind, solar and cogen at avoided costs
- Power Plant And Industrial Fuel Use Act (FUA)
 - Outlaws natural gas in generators
 - Coal in electric generators
- Natural Gas Policy Act (NGPA) running out of natural gas
 - Ramsey pricing for buyers and sellers and curtailment rules
- Natural Gas Act of 1938 (NGA) cradle to grave regulation
 - used rate design to encourage or discourage consumption
 - SFV, MFV, Seaboard, volumetric
- Gas certificates and reserves
 - Look at reserves backing the pipeline leads to overestimation of reserves
 - Contributes to the ‘running out’ panic of the 1970s
Integrated Resource Planning

⇒ a plan to meet forecasted peak plus a reserve margin.
⇒ time- and resource-intensive.
⇒ Requires many forecasts
 ⇒ Weather
 ⇒ Fuel costs
 ⇒ Load
 ⇒ Technology innovation
⇒ Who should bear the risk of being wrong?

⇒ 1980s IRP starts to address
 ⇒ oil price spikes
 ⇒ Nuclear cost overruns
⇒ 1990s: IRP fades in restructured states
⇒ 2000s: IRP revived for clean energy/climate change
⇒ ‘worst of central planning and due process’
Forecasting

Is the past prologue?

- Assumptions, model adjustments and historical data have a huge influence on the results.
- Projection of the past into the future
- What are future paths?
- What is the probability of future path?
- What is the probability distribution of
 - Climate change impact on electric power
 - Extremely cold weather, e.g., polar vortex
 - Natural gas prices
 - Innovation
- Do we ‘over react’ to the last problem?
- Uncertainty of government intervention
Poor or bad incentives in IRP

- Limited individual choice
- Moral hazard: when one person takes more risks because someone else bears the risks.
- Principal-agent problem: when the "agent" makes decisions that impact the "principal".
- The benevolent enlightened social planner has a principal-agent problem and a moral hazard problem.
- We play differently with house money

- Price-responsive demand should be the first choice
- If You (state) plan it, you own it (Pottery Barn rule?)
- Hedge for vertically integrated utilities
- Cost overruns without stranded costs
Wellhead Gas Price Forecasts from 1980 to 1990 (1995 $/Mcf)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forecast 5 Years Out for 1995 in 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIA</td>
<td>5.98</td>
<td>5.19</td>
<td>3.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.90</td>
<td>4.11</td>
</tr>
<tr>
<td>DOE</td>
<td>8.06</td>
<td>6.72</td>
<td>5.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.95</td>
<td>3.82</td>
</tr>
<tr>
<td>DRI</td>
<td>15.46</td>
<td>11.23</td>
<td>5.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.28</td>
<td>2.80</td>
</tr>
<tr>
<td>AGA</td>
<td>--</td>
<td>6.34</td>
<td>7.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.63</td>
<td>3.27</td>
</tr>
<tr>
<td>Average</td>
<td>9.84</td>
<td>7.37</td>
<td>5.57</td>
</tr>
<tr>
<td>Actual</td>
<td>1.59</td>
<td>1.96</td>
<td>3.44</td>
</tr>
<tr>
<td>Avg/Act</td>
<td>6.19</td>
<td>3.76</td>
<td>1.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.11</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Sources: Energy Information Administration (EIA), Department of Energy (DOE), Data Resources Incorporated (DRI), American Gas Association (AGA) and Gas Resources Institute (GRI).
I am a recovering forecaster

Who was the best econometrician of all time?
Successful Forecasters

- Timing is important. The most successful analysts know how to get the ‘right’ answer?
 - In 1980s, shale gas was a joke
 - In 2010s, shale gas was the central question
- Forecast early and often
- Be able to quickly and glibly explain why you were wrong
- Be able to defend your assumptions and model
- Get institutionalized
 - Old models (PROMOD)
 - accepted in litigation cases
 - Hammers looking for nails
 - The results are in the assumptions and massages
Energy Diversity in 2014

- Oil is a worldwide market; price fluctuates
- PURPA
 - Must buy wind, solar and cogen at avoided costs
 - EPAct 2005 clarifies avoided costs in ISOs
- FUA repealed
- EPA puts hard federal limits on emissions
- NGPA repealed except section 3 combining markets
 - didn’t run out; commodity deregulation
 - loaves and fishes story
- NGA pipeline open access
 - Pipelines get SFV and negotiated rates
 - Gas certificates with negotiated rates
- ISO markets: real-time, day-ahead and capacity
IRP (Electric Power Portfolio) is harder than Financial Portfolio

- Entry and exit: Life of a power asset is 40+ years
- Multiple political objectives:
 - jobs,
 - in-state resources
 - reliability
 - economics
- Transmission plan
 - If right generators show up
 - If wrong expensive capacitor
- What are the contingencies
 - Generator failure?
 - Single mode failure one event causes multiple systems to fail
- Market power
Are we whistling past the graveyard?
Reliability, IRP and Common (Single) mode failures

- Largest contingency is often weather
 - Hot and cold
 - Windless, cloudy and/or stormy
- Transmission capacity changes
- Hot weather
 - High Demand for power
 - Higher probability of generator failure
- Cold weather: winter is the new summer
 - high demand for electric power and natural gas
 - many generators have trouble starting up
 - Coal piles freeze
- Fukushima all nukes shutdown
- Solar generation and clouds
- Wind generators and wind
- What happens on a windless, cloudy, hot/cold hour?
Dimensions of Diversity

- Fuel supply failures
 - Natural gas pipeline failure
 - ISONE gas pipeline capacity
 - SPP Rail congestion for coal
 - Coal piles freeze
 - PJM dual fuel unit is the base unit
 - CAISO ‘duck’ curve and ramp rates

- Old clunker approach to reserves
 - Old clunkers are just that
 - Do not perform well
 - Costly to maintain
Relapse
Total Electricity End Use
(Billion Kilowatthours)
Total Electricity End Use
(Billion Kilowatthours)

\[y = 64.594x - 125819 \]
\[R^2 = 0.9899 \]
If we need more generators?

Would price-responsive demand bend this curve?
Total Electricity End Use (Billion Kilowatthours)

\[y = -2.9957x^2 + 12044x - 1E+07 \]
\[R^2 = 0.9655 \]

Quadratic fit bends this curve?
Average Retail Price of Electricity forecast

\[y = -8 \times 10^{-8} x^6 + 0.0009 x^5 - 4.4604 x^4 + 11796 x^3 - 2 \times 10^7 x^2 + 1 \times 10^10 x - 5 \times 10^{12} \]

\[R^2 = 0.924 \]

Too cheap to meter??

12/9/2014
Natural Gas Wellhead Price

mean = 3.46
sd = 2.06
cv = 0.60
Natural Gas Wellhead Price forecast

\[y = -1 \times 10^{-7}x^6 + 0.0013x^5 - 6.403x^4 + 16928x^3 - 3 \times 10^7x^2 + 2 \times 10^{10}x - 7 \times 10^{12} \]

\[R^2 = 0.8401 \]

Price goes negative because it is a co-product with crude oil
Coal Prices

mean 31.2
sd = 11.54
cv = .37
Coal Price forecast

\[y = 4E-08x^6 - 0.0004x^5 + 2.2063x^4 - 5968.2x^3 + 9E+06x^2 - 7E+09x + 2E+12 \]

\[R^2 = 0.8741 \]

mean 31.2
sd = 11.54
cv = .37
Reverse Portfolio Theory

⇒ Germany and Japan
 ⇒ Price of fossil fuel is high
 ⇒ Security of supply: fossil is imported
 ⇒ Portfolio theory tells us to find indigenous sources of energy, that is, wind and solar
 ⇒ Stimulate exports

⇒ China and India:
 ⇒ Poverty/living standards
 ⇒ 'All of the above' strategy

⇒ US and Canada: cheap fossil fuels mostly North American
 ⇒ Political coalition for wind and solar PTCs

⇒ Does climate change change this strategy? Very little
Well Developed Hedging for generators and load

- Bilateral contracts and state procurement hedge the prices for customers and generators.
- Hedging more important since LMPs can be more volatile (not necessarily higher)
- Contracts should have good price-responsive incentives
Wholesale v. Retail Market

- Federal EPA defines the climate agenda
- State have individual agendas that affect other states
- MOPR: Are some state programs a ‘taking’?

- National diversity
 - PTC for wind and solar
 - EPA Environmental limits
- State diversity
 - Renewable portfolios
 - CO2 markets

‘In my family, it was a sin to buy retail’
Woody Allen
Future Capacity Market?

- Minimum Tranches purchases mean a price for each
- Old clunkers keep them around as insurance
- Wind not yet economic; only few more years
- Solar not yet economic; only few more years
- Batteries not yet economic; change the market design
- Natural gas and CTs needed for balancing
- Oil need for diversity
- Coal ????
- Nuclear radiation
Capacity Market Reforms

➢ Reliability has a cost; price it in the day-ahead market and real-time market
➢ Price-responsive demand is key
➢ Let the day-ahead market and real-time market work, prices should clear the market
➢ Price-responsive demand does not need to be in the capacity market
Long-term Forecast for 1950

Interesting Predictions

-produces

'When you come to fork in the road take it' Y Berra

1894 The Times of London... "In 50 years, every street in London will be buried under nine feet of manure."

Samuel Morse was convinced that no one would use the telephone (Millennials prefer texting)

1899 'Radio has no future. Heavier-than-air flying machines are impossible. X-rays will prove to be a hoax.' Lord Kelvin

1929 'Stocks have reached what looks like a permanently high plateau.' Irving Fisher, Yale Economics Professor

1932 'There is not the slightest indication that nuclear energy will ever be obtainable.' Albert Einstein,
Long-term Forecast for 2000
Interesting Predictions

⇒ Insanity: doing the same thing over and over again and expecting different results. Albert Einstein

⇒ 1943 'market for maybe five computers' Thomas Watson, IBM,
⇒ 1977 'There is no reason anyone would want a computer in their home' Ken Olson, Digital Equipment Corp.,
⇒ 'The concept is interesting and well-formed, but in order to earn better than a 'C', the idea must be feasible.' Yale professor on Fred Smith’s Federal Express proposal)
⇒ 1972 Limits to Growth projects all known oil reserves would be consumed in 31 years.
Long term forecasting for 2100

How good are we tech forecasting??

<table>
<thead>
<tr>
<th>Discount factor</th>
<th>20</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99</td>
<td>0.82</td>
<td>0.61</td>
<td>0.37</td>
</tr>
<tr>
<td>0.98</td>
<td>0.67</td>
<td>0.36</td>
<td>0.13</td>
</tr>
<tr>
<td>0.95</td>
<td>0.36</td>
<td>0.08</td>
<td>0.01</td>
</tr>
<tr>
<td>0.90</td>
<td>0.12</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Answer: Ptolemy

Thank you

Does human nature need an end times story?

The magical mystery tour is hoping to take you away