Efficient Reliability
Demand-Side Resources and New Electricity Markets

Richard Cowart
Harvard Electricity Policy Group
September 21, 2000

The Setting: What FERC and States Now Face

- New Regional Power Markets
 - Regional power markets and T grids
 - RTOs, ISOs and regional reliability rules
- Reliability problems, market power, and price spikes are regional in scope
- BUT: Retail rates and services are state-regulated
- Retail rate structures drive demand, and thus wholesale markets, while wholesale market structures determine whether demand management has a market role.

Regional Power Markets -- Emerging Patterns

- Rapid demand growth
- Generally low prices, punctuated by highly volatile periods with high prices
- Price spikes are associated with reliability challenges & tight supply margins
- Market power evident; gaming?
- Substantial excess costs associated with price spikes drive up annual costs

Weekly peaks vary by 50%

NEPOOL Weekly Peak Loads
May 1, 1999 through July 21, 2000
While weekly peak PRICES vary by 10,000%!

NEPOOL Weekly High Spot Prices
May 1, 1999 through July 21, 2000

New Problem #1:
Price Spikes

Daily Maximum Spot Market Prices
ISO-NE, 12 Months Ending 7/21/00, Weekdays

Prices spike with thin generating margins

New England Peak Loads and Prices
Weekly – May 1, 1999 through July 21, 2000

New Problem #2:
Market Power

Forced Outage Rates
Trends in New England

1996-97 7.2%
1997-98 8.2%
1998-99 13.0%
5/99-12/99 19.8%
New Problem #3: Reliability

- Sales up 31% in a decade
- Peak loads growing rapidly
 - summer peak up 56,000 MW in 4 years
 - records set and reset in several regions
- DOE forecast: adding the equivalent of Japan and Germany to the US grid by 2020
- Power quality demands rising too
- Outages, warnings, close calls in several regions
- Causes vary, but distribution, transmission, and generation adequacy are ALL enhanced by lighter peak loads

1% of hours = 9% of peak load

New England Loads
12 Months Ending July 21, 2000

Existing 12 Month Peak = 21,992 MW
Top 1% of hour above 19,950 MW
Difference Equals 9.29% Reduction (2042 MW) in Load

1% of hours = 16% of annual spot power costs

New England Spot Energy Prices
12 Months Ending July 21, 2000

Max = $8000/MWh, May 8, 2000
1% of hours above $73/MWh
Top 1% of Prices equal 15.8% Wholesale Costs (weighted by load)
Efficiency -- A Proven Resource

- Utility DSM programs delivered 29,000 MW savings at a grid cost of 2 to 3 cents per kwh
- Modular, dispersed, many technologies
- Efficiency lower customer bills, and lowers the price spikes for everyone
- Lowest in pollution
- Efficiency relieves stressed distribution AND transmission constraints
- Programs can be tailored for each market

The Public Value of Efficiency

- Tracking CA PX Prices (98-99)
 - 1 MW baseload reduction saves participating customers $219,000
 - AND it also saves non-participating customers $658,000 by lowering market clearing prices in the PX for everyone
- "Public savings" $.075/kwh, or three times the direct savings!
 - (Rich Ferguson, CEERT 2000)

Can we capture EE and LM savings in new energy markets?

- Efficiency and load management are often superior solutions
- Breakup of the integrated utility & disintegration of IRP
- Will new entities have the power and responsibility to consider least-cost solutions?
- Will new energy markets value the contribution of EE and LM options?
- History, tradition, law (FPA):
 - focus on supply (efficiency and adequacy)
 - focus on wholesale markets

Solution Menu (so far...)

- (1) Multi-Settlement Market System
- (2) Demand-Side Bidding
 - Day-Ahead demand bidding
 - "Dispatchable Load" bidding into an integrated reserve market
- (3) Congestion Management Pricing
- (4) Pricing Reliability
- (5) Regional Uplift Charges -- what for?
Demand-side responses

- Type 1: Simple demand response
 - ISO posts expected day-ahead prices
 - Load-Serving Entities (LSE's) bid load while Generators bid supply
- Type 2: Price-sensitive demand bids
 - Example: "I'll run 50 MW up to 4 cents/kwh, at 5 cents, I'll ramp back to 40 MW"
 - Q: will this alter the day-ahead stack and curve?
- Type 3: "Dispatchable Load"
 - Make the Reserve Market an integrated market; both supply and load can bid to provide reserve resources
 - Load must be controllable and meter-able in real time
 - All providers of reserve resources receive the market clearing price for reserves of that type

Demand-Side Bidding -- what's the idea?

- Avoiding price spikes and thin reserves
- Mandatory real time pricing for most customers is not an option --
- Equipment cycling, rescheduling, on-site generation are often less expensive
- Beyond traditional interruptible contracts:
 - For economic value, not just reliability reasons
 - Broad-scale (e.g., radio controlled) options
 - Customer-specific deals
 - Buy-back with resale can clear the market and make money for customers and LSEs
 - Abdoo: "This was a heck of a good deal"

Discovering the Demand Curve

Multi-Settlements

- Traditional, single-settlement:
 - Resource stack, market clearing price
 - Bidders are not obligated to perform
 - Invites gaming (esp.strategic withholding)
- Multi-settlements:
 - If a unit bids successfully, it must perform, either physically or by buying equivalent production on the market;
 - "Resettlement" at end of month
 - Makes bidding real, dampens gaming
Why Doesn't Load Respond to Real-time System Cost?

- Customers see average prices, and they see them long after consumption
- Few customers on interval meters or real-time prices
- Default service prices -- low, fixed prices have two negative effects:
 - Inhibit new LSEs and thus, agile load management innovations
 - Insulate customers from market costs
- Result -- increased peak demand, more volatile wholesale market

Why doesn't load respond? (2)

- Default Service Rate Plans--rarely reward providers for success in efficiency and load management
 - Lost profits math: wires companies are throughput-addicted
 - Pass-through of power costs (e.g. CA PX costs): no incentive for EE or LM
 - Rate caps or freezes: no incentive if savings offset stranded costs
 - Revenue caps: would encourage cost-effective EE and LM

Why doesn't load respond? (3)

- Load profiling by pools or RTOs
 - An LSE charged for usage on a customer profiled basis will not benefit from high-value peak-load reductions unless a new profile is created for those customers
- Reliability rules and practices favor turbines and wires solutions--
 - "Dispatchable load" often cannot compete fairly with generation in ancillary services markets
 - Demand-side options not permitted to compete with generation and wires for uplift and other "socialized" support.

Cost of Ancillary Services

- Utilities spend 4 to 8 times as much on ancillary services as on DSM
- DSM: peaked at $2.7 Billion, now much lower
- Ancillary services: cost about $12 Billion per year, or 4 mills per kwh*

Uplift Charges

- Uplift charges are a common element in pool rules and new markets.
- Examples: spreading out the costs of congestion; paying for reliability measures that have widespread value.
- Question: If the new RTO/ISO/Poll has power to assess "uplift" for imports, reserves or transmission to enhance reliability, why not for efficiency, load management, or DG?

Efficient Reliability Decision Rule

- Before "socializing" the costs of a proposed reliability-enhancing investment through uplift or tariff, the proponent must demonstrate:
 - (1) that the relevant underlying tariffs are cost-based (including congestion costs);
 - (2) that a market failure remains; and
 - (3) that the proposed investment is the lowest cost, reasonably available means of resolving that market failure.

Lessons Being Learned

- Efficiency & load management can improve reliability at all levels -- from distribution all the way to generation adequacy.
- When margins are thin, even small savings are critical to reliable service.
- When markets are thin, the supply curve is very steep: 1% of the hours can raise annual spot market power costs 16% -- Savings can be very large.